work will help to further elucidate the relationships between the substrate binding sites and the heterogeneity of firefly luciferase.

References

Bigelow, C. C. (1967), J. Theor. Biol. 16, 187.
Bray, G. A. (1960), Anal. Biochem. 1, 279.
Cohn, E. J., and Edsall, J. T. (1943), Proteins, Amino Acids and Peptides, New York, N. Y., Reinhold, p 375.
DeLuca, M., Wirtz, G. W., and McElroy, W. D. (1964), Biochemistry 3, 935.

Denburg, J. L., Lee, R. T., and McElroy, W. D. (1969), Arch. Biochem. Biophys. 134, 381.

Fisher, H. F. (1964), Proc. Nat. Acad. Sci. U. S. 51, 1285.

Gilbert, G. A. (1955), Discuss, Faraday Soc. 20, 68.

Rhodes, W. C., and McElroy, W. D. (1958), J. Biol. Chem. 233, 1528.

Roark, D. E., and Yphantis, D. A. (1969), *Proc. N. Y. Acad. Sci. 164*, 245.

Travis, J., and McElroy, W. D., (1966), Biochemistry 5, 2170

Waugh, D. F. (1954), *Advan. Protein Chem. 9*, 326. Yphantis, D. A. (1964), *Biochemistry 3*, 297.

Site of Reaction of a Specific Diazo Inactivator of Pepsin*

Keelin T. Fry,† Oh-Kil Kim, Jürgen Spona, and Gordon A. Hamilton‡

ABSTRACT: At pH 5.5 in the presence of Cu(II), 1-diazo-4-phenyl-2-butanone reacts with swine pepsin in 1:1 molar stoichiometry to give a catalytically inactive enzyme. The inactivator reacts with pepsin to give an ester of 1-hydroxy-4-phenyl-2-butanone with the β -carboxyl group of a uniquely reactive aspartyl residue which is believed to be at the active site. This ester as well as a related model compound hydrolyze readily at pH 8 and room temperature. Following digestion

of the inactivated pepsin by swine pepsin at pH 2 several peptides containing the reacted aspartyl residue were isolated. From the sequences of these peptides the sequence around the reactive aspartyl residue is indicated to be: Ile-Val-Asp-Thr-(Gly,Thr)-Ser-Leu. This sequence is similar to that containing the aspartyl group which reacts with N-diazoacetyl-L-phenylalanine methyl ester (Bayliss, R. S., Knowles, J. R., and Wybrandt, G. B. (1969), Biochem. J. 113, 377).

inetic studies with pepsin indicate that at least two carboxyl groups on the enzyme are involved in catalysis (Jackson et al., 1965, 1969; Clement et al., 1968; Zeffren and Kaiser, 1967; Lutsenko et al., 1967; Denberg et al., 1968; Hollands and Fruton, 1968; Cornish-Bowden and Knowles, 1969; Lundblad and Stein, 1969). Stein and Fahrney (1968) have shown that a carboxyl group is directly involved in the pepsin-catalyzed hydrolysis of sulfite esters, and Shkarenkova et al. (1968) have observed that oxygen from H₂¹⁸O is rapidly incorporated into two carboxyl groups of pepsin. Erlanger and his coworkers (1965, 1966; see also Gross and Morell, 1966) have identified one uniquely reactive carboxyl group using a phenacyl halide inhibitor. However, this carboxyl is apparently not catalytically active but rather is involved in

substrate binding because the modified enzyme still retains considerable catalytic activity toward hemoglobin as substrate (Erlanger *et al.*, 1967).

In an attempt to identify a carboxyl group at the active site of pepsin by means of a carboxyl-reactive reagent we chose the readily synthesized diazoketone 1-diazo-4-phenyl-2butanone (DPB)1 since it mimics partially the structure of phenylalanine amides which are good substrates for pepsin. DPB, in the presence of Cu(II) as catalyst, was found to react with pepsin in a 1:1 molar ratio to give a completely inactive enzyme (Hamilton et al., 1967). After the work with DPB was begun, Delpierre and Fruton (1965) reported the inhibition of pepsin activity by diphenyldiazomethane. This inactivation is apparently not specific since more than 1 mole of the inhibitor reacts per mole of enzyme. Independent of our work several other groups of investigators (Rajagopalan et al., 1966; Delpierre and Fruton, 1966; Ong and Perlmann, 1967; Erlanger et al., 1967; Bayliss and Knowles, 1968; Kozlov et al., 1967; Stepanov and Vagonova, 1968; Lundblad and Stein, 1969) have found that other diazocarbonyl compounds which have structures related to substrates of the enzymes will also inactivate pepsin.

^{*} From the Charles F. Kettering Research Laboratory, Yellow Springs, Ohio 45387 (Contribution No. 402), and the Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802. Received February 9, 1970. Supported in part by Research Grants GM-09585 and GM-14985 from the Institute of General Medical Sciences, Public Health Service, and in part by the Alfred P. Sloan Research Foundation. Preliminary communications of part of this work have appeared (Hamilton et al., 1967; Fry et al., 1968).

[†] Present address: Central Research Department, Experimental Station, E. I. duPont de Nemours & Company, Wilmington, Del. 19898. ‡ To whom inquiries and requests for reprints should be sent at the Department of Chemistry, Pennsylvania State University; Alfred P. Sloan Research Fellow, 1967-1969.

¹ Abbreviations used are: 1-diazo-4-phenyl-2-butanone, DPB; 1-hydroxy-4-phenyl-2-butanone, HPB; 1-acetoxy-4-phenyl-2-butanone, AcHPB; 5-dimethylaminonaphthalene-1-sulfonyl, dansyl.

We have been able to: isolate, from enzymic hydrolysis of the inactivated pepsin, peptides containing radioactivity from ¹⁴C-labeled DPB; show that the inhibitor becomes attached by an ester linkage to the β-carboxyl group of an aspartyl residue; and determine the amino acid sequence in the vicinity of the reactive aspartyl group (Fry *et al.*, 1968). Knowles and his coworkers subsequently reported evidence that this aspartyl group also reacts with *N*-diazoacetyl-L-phenylalanine methyl ester (Knowles and Wybrandt, 1968; Bayliss *et al.*, 1969). Details of our work previously given only in outline, and further investigations of the sequence around the diazocarbonyl-reactive aspartyl residue, are included in this report.

Experimental Section

Materials. DPB and DPB-2-14C were synthesized from 3-phenylpropionic acid and 3-phenylpropionic-1-14C acid (New England Nuclear Corp.) by the procedure described by Birkofer (1947), and were purified by distillation twice at 95–100° (0.1 mm). The diazoketone is an oil at room temperature but solidifies on standing in the refrigerator. The spectral characteristics of the diazoketone are as follows: infrared (no solvent), strong absorptions at 1637 and 2100 cm⁻¹; nuclear magnetic resonance (in CDCl₃), τ 2.82 (singlet, relative area 5), 4.86 (singlet, relative area 1), 6.9-7.7 (complex multiplet, relative area 4); ultraviolet (in cyclohexane), maximum at 246 nm (log ϵ 4.0). The specific activity of the DPB-2-14C used for most of the experiments was 1.50×10^8 dpm/mmole (the value of 1.62×10^8 dpm/mmole for this preparation given in a preliminary communication (Fry et al., 1968) is in error). In some preliminary experiments the specific activity of the DPB-2-14C was 3.2×10^7 dpm/mmole. 2-Diazocyclohexanone was synthesized by the procedure of Stetter and Kiehs (1965).

1-Hydroxy-4-phenyl-2-butanone (HPB) was prepared as follows from 1-chloro-4-phenyl-2-butanone (McPhee and Klingsberg, 1944). To a solution of 2.4 g of sodium in 160 ml of methanol and 2.4 ml of water was added a solution of 16 g of 1-chloro-4-phenyl-2-butanone in 80 ml of methanol. After refluxing with stirring for 2 hr, 150 ml of water was added, the pH was adjusted to 4-5 with concentrated HCl, and the reaction was refluxed for 2 additional hr. Following evaporation of the solvent under reduced pressure, the residue was washed twice with 100 ml of water, and extracted twice with 100 ml of ether. The ether extract was dried with anhydrous Na₂SO₄ and the solvent was removed by evaporation. Distillation of the residue under reduced pressure yielded 6.0 g (42\% yield) of a fraction boiling at $112-114^{\circ}$ (2 mm). On standing at room temperature the fraction solidified. Recrystallization from ether yielded white narrow plates melting at 44-45° (Anal. Calcd for $C_{10}H_{12}O_2$: C, 73.15; H, 7.37. Found: C, 73.41; H, 7.43). The spectral characteristics of HPB are as follows: infrared (in CCl₄), strong absorptions at 1725 and 3485 cm⁻¹; nuclear magnetic resonance (in CCl₄), τ 2.85 (singlet, relative area 5), 5.97 (singlet, relative area 2), 6.88 (singlet, relative area 1), 7.0-7.5 (multiplet, relative area 4); mass spectrum, intense peaks at m/e 133, 105, 91, and a weak peak at m/e 164 (molecular ion).

When HPB is treated with phenylhydrazine by the procedure described by McPhee and Klingsberg (1944) a phenylhydrazone is obtained (mp 111.5–112; λ_{max}^{MeOH} 274 nm

(ε 19,300). Anal. Calcd for $C_{16}H_{18}N_2O$: C, 75.56; H,7.13; N, 11.01. Found: C, 75.60; H, 7.04; N, 11.10). However, when HPB is treated with 2,4-dinitrophenylhydrazine under the same conditions, or under conditions given by Brady (1931), an osazone is obtained (mp 252.5-253.5; λ_{max}^{MeOH} 393 nm. Anal. Calcd for $C_{22}H_{18}N_8O_8$: C, 50.58; H, 3.47; N, 21.45. Found: C, 50.69; H, 3.50; N, 21.10.)

1-Acetoxy-4-phenyl-2-butanone (AcHPB) was prepared from HPB as follows. A solution of 4 g of HPB, 30 ml of acetic anhydride, and two drops of concentrated HCl was allowed to stand at room temperature for 2 days and then refluxed for 2 hr. After evaporation of the solvent under reduced pressure, the residue solidified on cooling in ice and was recrystallized from ether. The colorless plates (4.8 g, 80% yield) melted at 43.5-44.5° and had the following characteristics. Anal. Calcd for C₁₂H₁₄O₃: C, 69.88; H, 6.84. Found: C, 70.02; H, 6.85; infrared (in CCl₄), strong absorptions at 1765, 1745, and 1230 cm⁻¹ and no absorption in the 3500-cm⁻¹ region; nuclear magnetic resonance (in CCl₄). τ 2.88 (singlet, relative area 5), 5.54 (singlet, relative area 2), 7.0-7.6 (multiplet, relative area 4), 7.98 (singlet, relative area 3); mass spectrum, intense peaks at m/e 206 (molecular ion), 146, 128, 105, and 91.

Inactivated pepsin was prepared from swine pepsin (lot no. J2211, P2589, and R3466, two- or three-times crystallized from dilute alcohol) obtained from Mann Research Laboratories. Twice-crystallized swine pepsin (lot PM 713) used for digestion of ¹⁴C-labeled preparations and carboxypeptidase A (lot 7 J A) used for C-terminal determinations were purchased from Worthington Biochemical Corp. The crystalline lyophilized preparation of swine pepsinogen (lot K2298) was obtained from Mann Research Laboratories.

Dansylisoleucine was prepared by the method of Morse and Horecker (1966). Dansyl chloride and additional dansylated amino acids were purchased from the Pierce Chemical Co. Polyamide (ε-polycaprolactam) layer sheets were obtained from the Gallard-Schlesinger Chemical Manufacturing Corp. *N*-Acetyl-L-phenylalanyl-L-tyrosine was obtained from Cyclo Chemical Corp.

Preparation of the Inactivated Pepsin. For the experiments whose results are summarized in Table I, pepsin was dissolved in 10 ml of 0.04 μ acetate buffer (pH 5.5, containing CuSO₄ for the reactions catalyzed by Cu(II)), and a small aliquot (ca. 10 μl) of an ether solution of DPB or DPB-2-14C was added. Following incubation at 38° for the specified period of time, the solutions which initially contained DPB-2-14C were dialyzed at 5° vs. 4 l. of 0.04 μ buffer (pH 5.5) for at least 20 hr with at least two changes of buffer. Aliquots of these dialyzed solutions were then assayed for protein concentration, radioactivity, and catalytic activity as indicated below. Solutions which initially contained DPB were not dialyzed before assay for catalytic activity.

Large quantities (up to 1 g) of ^{14}C -labeled pepsin were prepared by reacting 5×10^{-4} M pepsin in 0.05 M acetate buffer (pH 5.5) with 5 or 10×10^{-4} M DPB-2- 14 C (specific activity 1.50×10^{8} dpm/mmole) in the presence of 1×10^{-4} M Cu(II) at 38° for 2–2.5 hr. After exhaustive dialysis (until no further radioactivity appeared in the dialysate) vs. the acetate buffer, the 14 C-labeled pepsin was precipitated by adding ten volumes of alcohol. After sitting overnight at 4° , the precipitated material was separated by centrifugation, washed several times with 85% alcohol, and dried *in vacuo*.

The overall recovery was ca. 75%. When 5×10^{-4} M DPB- $2^{-14}C$ was used, 65% of the pepsin was labeled with ^{14}C , and when 10×10^{-4} M DPB- $2^{-14}C$ was used, 95% of the pepsin was labeled. The labeled pepsin is only sparingly soluble in pH 5 buffers but dissolves readily in buffers of pH 6 or above.

Estimation of Pepsin and Inactivated Pepsin Concentrations. The pepsin and inactivated pepsin content of solutions was estimated from the absorbance at 278 nm assuming a molar extinction coefficient of 50,000. This is the reported extinction coefficient for pepsin solutions (Perlmann, 1966) and it was found that following inactivation with DPB or DPB-2-14C the molar extinction coefficient at 278 nm remains the same.

Radioactivity Measurements. Standard liquid scintillation techniques using commercial instruments and Bray's solution (Bray, 1960) were employed.

Catalytic Activity of Pepsin Solutions. The catalytic activity was determined at 38° and pH 2 by the ninhydrin assay (Moore and Stein, 1948) using N-acetyl-L-phenylalanyl-L-tyrosine as substrate.

Identification of the Ether-Extractable Radioactive Compound Released from Inactivated Pepsin at pH 8. In the experiment summarized in Table II, 1.46×10^{-2} mmole of 95%¹⁴C-labeled pepsin was dissolved in 45 ml of 0.05 M Tris buffer (pH 8.05) and incubated at room temperature for 48 hr. After the solution was extracted three times with 50-ml quantities of ether, the combined ether layers were dried over anhydrous Na₂SO₄ and evaporated to dryness. The residue was dissolved in 30 ml of ethanol, and the solution was filtered (to remove a small amount of white solid) and counted (line 2, Table II). To the ethanol solution were added 1.86 mmoles of unlabeled HPB and a few drops of 1 N HCl. After the solution was concentrated to about 10 ml, 0.4 ml of freshly distilled phenylhydrazine was added and the solution was refluxed for 10 min. When the solution was concentrated under reduced pressure to approximately 1 ml and cooled in the refrigerator, crystals deposited. These were filtered, washed with cold ethanol, and dried in vacuo. An aliquot of an ethanol solution of this material was used for counting (line 3, Table II). The crystalline material was recrystallized twice from ethanol and counted as before (lines 4 and 5, Table II). Infrared and ultraviolet spectra of solutions of the recrystallized material were identical with those of authentic samples of the phenylhydrazone of HPB. The radioactivity of the phenylhydrazone reported in Table II includes a small (1-2%) quench correction.

Kinetics of Hydrolysis of AcHPB. The rate of hydrolysis of AcHPB was followed by titrating the released acetic acid with base using a Radiometer pH-Stat.

Preparation of Labeled Peptide Fragments. Extensive digestion of ¹⁴C-labeled pepsin with native pepsin was performed as follows. A 172-mg sample of 95% inactivated ¹⁴C-labeled pepsin (specific activity 1.43 × 10⁸ dpm/mmole) was suspended with stirring in 3.27 ml of 0.05 M Tris-HCl buffer (pH 7.3) to give a turbid solution at pH 6.4. The small amount of insoluble material remaining after 1 hr at room temperature was dissolved by the addition of 0.1 ml of 0.1 M Tris-HCl buffer (pH 8.5), followed by an additional 40-min stirring. The pH of the resulting solution was then raised from 6.68 to 7.45 by titration with 0.4 ml of 0.1 M Tris-HCl buffer (pH 8.5). The clear slightly yellow solution obtained was allowed to stand for an additional 15 min at room temperature to ensure denaturation of the pepsin, and was then treated

with 20 ml of 0.02 M HCl. The pH of the resulting suspension of precipitated protein was lowered from 2.30 to approximately 1.9 by the addition of 0.14 ml of 1 M HCl and digestion at 37° was then initiated by addition of 3.0 ml of a solution of swine pepsin (5 mg/ml in 0.01 M HCl) to the magnetically stirred suspension. Within 15 min most of the precipitate present at the beginning of the digestion had dissolved. After 4 hr an additional 3.0 ml of pepsin solution was added and the digestion was continued for an additional 14.5 hr. The resulting digest, pH 2.65, was then treated with 0.1 ml of 1 M acetate buffer (pH 5; resulting pH, 2.85) and lyophilized to dryness.

Short-term enzymic digestion of a 122-mg sample of inactivated pepsin was performed in a similar fashion except that the denatured pepsin was precipitated by the addition of 15 ml of 0.5 m formic acid to yield a suspension at pH 2.1 before digestion with native pepsin (10 mg added in 2 ml of 1 m formic acid) for 2 hr at 37°.

Fractionation of Pepsin Digests by Gel Filtration. Columns of Sephadex G-15 and Sephadex G-25 (fine bead form) were packed in 0.2 m acetic acid (Eaker, 1962) and operated under gravity flow at room temperature with 0.2 m acetic acid as eluent. The Sephadex G-25 column used in all experiments had dimensions of 1.9 × 243 cm and void volume of 275 ml. The Sephadex G-15 column used was 0.9 × 158 cm and had a void volume of 40.5 ml. Portions of fractions eluted from gel columns were assayed for ninhydrin-positive material using the method of Rosen (1957) after base hydrolysis by a method similar to that described by Hirs et al. (1956).

Paper Chromatography and Electrophoresis. Descending chromatography for 10–11.5 hr on Whatman No. 3MM paper was performed in 1-butanol-acetic acid-water (200: 30:75, v/v) (Nolan and Margoliash, 1966).

Paper electrophoresis on Whatman No. 3MM paper in 8% formic acid (7.6 ml of 88% formic acid + 91 ml of H₂O) for 5 hr and in pyridine-acetic acid-water (1:10:289, v/v) at pH 3.6 for 4 hr (Katz et al., 1959) was performed on a 30-in. water-cooled, flat-plate electrophoresis apparatus (Savant, Model FP-30A) at 3000 V. The body of the electrophoresis paper was separated from direct contact with the paper wicks dipping into the electrode troughs by two pieces (four single thicknesses) of 1-in. wide, buffer-wetted, dialysis tubing (size 20 from the Visking Co., Chicago, Ill.). This procedure (Rothman and Byrne, 1963) reduced the degree of wetting of the electrophoresis paper during extended runs.

Electrophoresis at pH 6.4 in pyridine-acetic acid-water (200:8:1800, v/v) (Offord, 1966) was performed on Whatman No. 3MM paper in a tank electrophoresis apparatus (Gilson Medical Electronics, Model D) at 115 V/cm using Varsol as the water-immiscible phase (Katz *et al.*, 1959).

Peptides were streaked on the Whatman No. 3MM paper in 0.2 M acetic acid. Radioactive bands on electrophoresis and chromatographic patterns obtained were detected by counting sections of runner strips. The center sections of the radioactive bands were eluted using 0.2 M acetic acid and the absence of significant amounts of free inhibitor in the eluates confirmed by counting ether extracts of a portion of each.

Distances of migration of bands in chromatography were measured relative to the migration of the solvent front and are designated $R_{\rm FC}$. The $R_{\rm FC}$ value observed for marker spots of leucine in the butanol-acetic acid-water system was 0.67. Distance of migration of peptides in electrophoresis in 8%

TABLE I: Some Characteristics of the Reaction of Pepsin with DPB and DPB-2-14C.

Concn (M × 104) During Incubn at pH 5.5, 38°			Length of Incubn	Inhibn of	% Pepsin with	
Pepsin	DPB or DPB-2-14Ca	Cu(II)	(min)	Catalytic Act.	¹⁴ C Attached ^b	
0.3	0.83	0.0	5	0		
0.3	0.83	0.0	120	40¢		
0.3	0.83	0.1	5	84		
0.3	0.83	0.1	120	80		
0.3	0.00	1.0	120	0		
0.3	0.83^{d}	0.0	120	0		
0.3	0.83^{d}	1.0	120	76		
9.3	10	1.0	30	91	81	
9.3	100	1.0	30	60	60	

^a Specific activity 3.2×10^7 dpm/mmole. ^b Assuming a 1:1 molar stoichiometry. ^c This value is not too reproducible; however, it was usually between 20 and 50. ^d During incubation the solution also contained 1.5×10^{-2} M *N*-acetyl-L-phenylalanyl-L-tyrosine.

formic acid was measured relative to the migration of aspartic acid and is designated $R_{\rm FE}$. Distance of migration in electrophoresis at pH 3.6 is given in centimeters along with the distance of migration (toward the cathode) of a marker spot of serine. No corrections for movement due to electroosmosis were made in reporting electrophoretic migrations.

Recoveries of ¹⁴C-labeled material from chromatograms and electrophoresis patterns were calculated for material eluted from the center of radioactive bands as well as that present in the corresponding region of runner strips.

Amino Acid Analyses. Peptides were hydrolyzed at 110° in evacuated, sealed tubes with 0.2 ml of twice-distilled constant-boiling HCl. Hydrolysates were evaporated to dryness at 40° under reduced pressure as recommended by Crestfield et al. (1963).

Amino acid analyses were performed by the method of Spackman *et al.* (1958) with a Phoenix amino acid analyzer (Model 8000 B) equipped with an accelerated flow system and with 1.0-cm path-length micro flow colorimeters (Phoenix Model 800) using loads of amino acids equivalent to 0.020–0.005 μ mole of hydrolyzed peptides. The concentrations of amino acids present in amounts of less than 0.002 μ mole were estimated directly from peak heights rather than by integration by the height-times-width method. Base-line stability was adequate to allow easy detection of the amino acids present in the isolated peptides in amounts as low as 0.0005 μ mole.

Sequence Determinations. Conditions used for sequential analysis of peptides from the N-terminal end by the subtractive Edman method were those described by Gray (1967b). Extraction with *n*-butyl acetate (Gray, 1967b) proved adequate in the cases studied here to remove anilinothiazolinones as well as diphenylthiourea from the reaction mixture following the cyclization step. The butyl acetate extracts obtained after each cycle were evaporated in a stream of nitrogen and residues obtained, after dissolving in 0.5 ml of 95% ethanol, were added to Bray's solution for determination of ¹⁴C content. Where noted, the N-terminal amino acid exposed by each stage of the degradation was determined directly following dansylation (Gray, 1967a) using chromatog-

raphy on polyamide layer sheets by the method of Woods and Wang (1967). Solvent systems 1 and 2 recommended by these authors were used.

Carboxypeptidase A digestion of 6–9-nmole samples of peptides was performed using 10 μ g of enzyme at 37° in a final volume of 0.11 ml of pH 8.5–8.8 morpholine buffer as described by Ambler (1967a). Released amino acids were determined directly using the amino acid analyzer.

Results

Some General Characteristics of the Inactivation. Some of the properties of the reaction of pepsin with DPB are shown by the results summarized in Table I. Although Cu(II) alone under these conditions has no effect on the enzymic catalysis, it markedly catalyzes the inactivation of the enzyme by DPB. In the absence of Cu(II) there is a slow inactivation of the enzyme by DPB, but the rate is not very reproducible, possibly because the reaction is catalyzed by trace impurities of Cu(II) which are present in varying amounts. When the inactivation reaction is slow and incomplete (in the absence of added Cu(II)) then a specific substrate (*N*-acetyl-*L*-phenyl-alanyl-*L*-tyrosine) protects the enzyme from inactivation. This indicates that the inactivation reaction occurs at or near the active site of the enzyme.

The experiments summarized in the last two lines of Table I indicate that one molecule of DPB-2-14C reacts with one molecule of pepsin to give a modified enzyme which is cata-

² V. Briones Valenty of this laboratory has recently shown that, at low ionic strength (0.01 M) and slightly higher pH's (5.7), Cu(II) does cause an inactivation of pepsin probably due to denaturation. Under the same conditions in the absence of Cu(II) the enzyme is stable. This Cu(II) effect is apparently the reason for the reported inactivation of pepsin by dimethylsulfonium phenacylide (Lundblad and Stein, 1969). We have not been able to observe any inhibition of pepsin activity attributable to reaction with dimethylsulfonium phenacylide either in the presence or absence of Cu(II). Apparently the observed inactivation (Lundblad and Stein, 1969) arose because of a slight increase in pH on addition of the basic dimethylsulfonium phenacylide to the weakly buffered pepsin solution containing Cu(II).

TABLE II: The Identity of HPB and the Radioactive Compound Released from ¹⁴C-Labeled Pepsin at pH 8.

Description ^a	Total Radioactivity (dpm \times 10 ⁻⁵)	
(1) 1.46 × 10 ⁻² mmole of 95% labeled pepsin (2) Ether-extractable radio-	20.8	1500 ⁵
activity after treatment of (1) at pH 8 (3) Phenylhydrazone prepared	17.7	
from (2) plus 1.86 mmoles of unlabeled HPB (4) Recrystallized phenylhydra-	11.8	8.5
zone from (3)	2.25	8.6
(5) Recrystallized phenylhydra- zone from (4)	0.29	8.2
(6) Expected specific activity of the phenylhydrazone		8.7

^a For details, see Experimental Section. ^b Specific activity of the DPB-2-1⁴C used to prepare the labeled pepsin. ^c Calculated from the specific activity of DPB-2-1⁴C, the known amount of unlabeled HPB added, and the total radioactivity in (2) assuming it is all due to labeled HPB.

lytically inactive toward the synthetic substrate. Experiments performed by V. Briones Valenty in this laboratory have shown that the modified enzyme is also catalytically inactive in another enzyme assay using hemoglobin as substrate (Rajagopalan *et al.*, 1966b).

Although a large number of different diazocarbonyl compounds have now been found to inactivate pepsin (for references see introduction) not all such compounds do. For example, under conditions (with Cu(II) catalysis) where DPB gives almost complete inactivation of pepsin, 2-diazocyclohexanone has no effect on the catalytic activity. This result suggests that binding at a specific site (presumably the active site) is necessary prior to the inactivation reaction. Further evidence for this is the observation that pepsinogen does not react with DPB-2-14C (with Cu(II) catalysis) to give a 14C-labeled pepsinogen.

Organic solvents, such as cyclohexane and ether, extract DPB almost quantitatively from aqueous solution, but extraction of the inactivated enzyme solution following incubation does not reverse the inactivation nor does it remove the radioactivity from the ¹⁴C-labeled pepsin. Also, the radioactivity cannot be removed by dialysis or Sephadex chromatography. The ¹⁴C-labeled pepsin can be precipitated with ethanol and washed several times with 85% ethanol with no loss in radioactivity. Following precipitation of the ¹⁴C-labeled pepsin with 5 N trichloroacetic acid, the radioactivity remains in the precipitated material even after washing with organic solvents such as acetone, dioxane, cyclohexane, and ether. All these results indicate that a covalent bond is formed between the inactivator and pepsin during the inactivation reaction.

Release of Radioactivity from the ¹⁴C-Labeled Pepsin and Identification of the Product. Radioactivity is not released from the ¹⁴C-labeled pepsin if it is incubated at pH 5.5, 38° for extended periods of time. Also, treatment at pH 5.5, 38° for 24 hr with 0.1 M thioethanol or 0.1 M hydroxylamine followed by extended dialysis does not remove the ¹⁴C. However, following incubation of the ¹⁴C-labeled enzyme at pH 8 and 30° for a few hours, the radioactivity becomes ether extractable. The release of radioactivity from the ¹⁴C-labeled pepsin follows first-order kinetics to well over 2 half-lives. This indicates that the ¹⁴C label is attached to pepsin at only one site and not at two or more different sites. The t_{1/2} for the radioactivity release at pH 8.05 (0.005 M Tris buffer) and 30.0° is 5.5 hr.

Preliminary chromatographic experiments suggested that the ether-extractable radioactive compound is HPB. The results shown in Table II verify this conclusion. The phenyl-hydrazone prepared from the radioactive compound plus unlabeled HPB does not change its specific activity on repeated recrystallizations. Since the observed activity of the phenyl-hydrazone is essentially the same as that calculated (line 6), virtually all the ether-extractable radioactivity must be present as HPB.

The Rate of Hydrolysis of AcHPB. Since it seemed possible that DPB reacts with a carboxyl group of pepsin to give an ester of HPB which then hydrolyzes at pH 8, the rate of hydrolysis of the model compound, AcHPB, at slightly basic pH's was investigated. At 30.0° and pH 8.5 to 9.6 in 5% dioxane-water the rate of hydrolysis of AcHPB is given by the expression: rate = $(58 \pm 5 \text{ M}^{-1} \text{ sec}^{-1})[\text{AcHPB}][\text{OH}^{-}]$. Therefore, $t_{1/2}$ for the hydrolysis of AcHPB at pH 8.0 and 30.0° would be approximately 3 hr. This is comparable to the observed $t_{1/2}$ for the release of HPB from the labeled enzyme, and indicates that a reasonable structure for the inactivated pepsin is an ester of HPB with a carboxyl group of pepsin.

Isolation of Labeled Peptides after Extended Digestion. Gel filtration chromatography of the 18.5-hr digest on Sephadex G-25 gave the elution pattern shown in Figure 1. Total recovery from the column was 98% (68% in fractions 281–308). The peak at fractions 347–360 which contained 14% of the ¹⁴C applied to the column is due to free inhibitor as indicated by the observations that: (a) the radioactivity in the pooled fractions was extractable with ether, and (b) an acid hydrolysate of the ether extract was devoid of amino acids.

The material in fractions 283–290 (peak I) gave a single major peak of radioactivity (eluting at 91 ml) when subjected to gel filtration on Sephadex G-15. The material in the center section of this peak (84% of the ¹⁴C applied to the column) gave a single band of radioactivity (peptide I) in the successive steps: (a) chromatography ($R_{\rm FC} = 0.85$; recovery, 80%), (b) formic acid electrophoresis ($R_{\rm FE} = 0.60$, migration 23 cm; recovery, 88%), and (c) pH 3.6 electrophoresis (migration 7.9 cm toward cathode vs. 4.0 cm for serine, recovery, 84%).

The asymmetric peak of radioactivity eluted from the G-25 column in fractions 294–304 (Figure 1) was resolved into two peaks (II and III) by passage through the G-15 Sephadex column (Figure 2). Total recovery of radioactivity from the G-15 column in fractions 75–125 was 97%. Broad cuts from each peak (peak II, fractions 97–101, 24% of ¹⁴C applied and peak III, fractions 104–115, 67% of ¹⁴C applied)

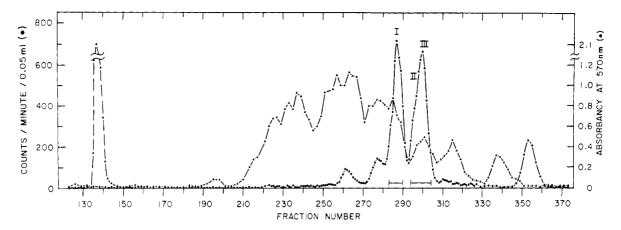


FIGURE 1: Gel filtration on Sephadex G-25 of 18.5-hr pepsin digest of inhibited pepsin. A sample containing 14 C equivalent to 6.4×10^5 dpm (96% of the 14 C present in the original digest) was applied to the column in 4.0 ml of 0.2 m acetic acid. Fractions of 2.0 ml were collected at a flow rate of 23.5 ml/hr. Absorbancy at 570 nm was measured after ninhydrin reaction with base-hydrolyzed, 0.05-ml aliquots.

were used for isolation of labeled peptides II and III, respectively, by chromatography and electrophoresis.

For peptide II single bands of radioactivity were obtained in the successive steps: (a) chromatography ($R_{\rm FC}=0.75$; recovery, 91%), (b) electrophoresis in formic acid ($R_{\rm FE}=0.72$; migration 30 cm; recovery, 30% in trailing edge, 58% in center cut), and (c) electrophoresis at pH 3.6 (migration 9.5 cm toward cathodes vs. 4.0 cm for serine; recovery, 89%). Amino acid analyses of portions of material eluted from the trailing edge and center section of the band in formic acid electrophoresis indicated that the same peptide was the predominant species in each.

For peptide III single peaks of radioactivity were obtained in the successive steps: (a) chromatography ($R_{FC} = 0.89$; recovery, 90%) and (b) electrophoresis in formic acid ($R_{FE} = 0.67$; migration 28 cm; recovery, 86%).

Isolation of Labeled Peptides after Short-Term Digestion. Suspension of the lyophilized 2-hr digest of inhibited pepsin in 4.0 ml of 0.2 M acetic acid, followed by centrifugation to remove the large amount of insoluble material present, yielded a supernatant solution (3.81 ml) containing approximately 64% of the 14C initially present in the digest. Gel filtration of the soluble material on Sephadex G-25 gave an elution pattern (Figure 3) which contained two broad, asymmetric peaks of radioactivity (peaks A and B). The positions of elution of these peak fractions indicated that they contained labeled peptide fragments which were larger than those present in the peak fractions obtained by gel filtration of the long-term digests (peaks I, II, and III in Figure 1). The radioactivity recovered in peak A (fractions 236–255, 1.09 \times 10 $^{\scriptscriptstyle 5}$ dpm) and peak B (fractions 265–280, 1.28×10^5 dpm) accounted for 34 and 40% respectively, of the 14C applied to the column. The peak of radioactivity at fractions 349-360 was due to free inhibitor as determined by ether extraction.

Passage of material from peak A through the column of Sephadex G-15 yielded a slightly asymmetric peak of radio-activity eluting at 71 ml (91% recovery) with no significant separation of labeled components. Chromatography of this material gave two broad radioactive bands with approximate $R_{\rm FC}$ values of 0.67 and 0.83. Recovery of ¹⁴C from the major faster migrating band was 49% (4.19 \times 10⁴ dpm). Electro-

phoresis of the material from this band in 8% formic acid yielded a broad distribution of radioactivity (Figure 4a). The portion of the electrophoresis pattern eluted with an approximate $R_{\rm FE}=0.42$ contained 40% of the $^{14}{\rm C}$ (1.35 \times 10⁴ dpm) in the sample initially applied to the paper. Electrophoresis of the eluate at pH 3.6 (Figure 4b) yielded a single major band of radioactivity (distance of migration 3.8 cm toward cathode vs. 3.6 cm for serine). Total recovery of $^{14}{\rm C}$ in the three cuts indicated was 90%, 67% (7400 dpm) in the center fraction. The material in the center fraction has been designated peptide A.

Gel filtration on G-15 Sephadex, paper chromatography, and electrophoresis of material in peak B (Figure 3) indicated the presence in this peak of several radioactively labeled peptides including peptide I. Sufficient purification was not obtained, however, to allow sequence determination of these peptides.

Determination of the Sequence of the Labeled Peptides. Amino acid composition of the purified peptides and results

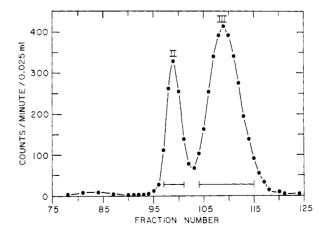


FIGURE 2: Gel filtration on Sephadex G-15 of pooled, lyophilized fractions 294–304 (peak II, III) from gel filtration of 18.5-hr digest on Sephadex G-25. A sample containing $^{14}\mathrm{C}$ equivalent to 2.04 \times 105 dpm was applied to the column in 1.01 ml of 0.2 M acetic acid. Fractions of 0.93 ml were eluted at a flow rate of 5.74 ml/hr.

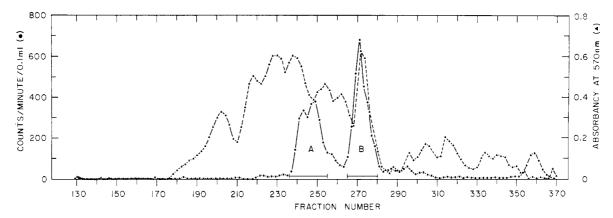


FIGURE 3: Gel filtration on Sephadex G-25 of 2-hr pepsin digest of inhibited pepsin. A sample containing 14 C equivalent to 3.24×10^5 dpm was applied to the column. Fractions of 2.01 ml were collected at a flow rate of 25.2 ml/hr. Absorbancy at 570 nm was measured after nin-hydrin reaction with base-hydrolyzed, 0.05-ml aliquots.

of the subtractive Edman degradations are given below. Initial amino acid analysis of each peptide was performed after 69-hr hydrolysis while residues remaining from each stage of the Edman degradation were hydrolyzed 39 hr before analysis. No corrections were made for destruction of labile amino acids (Ser and Thr) during acid hydrolysis. In presenting results of the Edman degradations values for the residue removed at each stage have been indicated in boldface type and the values used in calculating recoveries have been placed in parentheses. The percentage recovery at each stage was calculated from the amount of peptide submitted to degradation at that stage. The original peptides were neutral in electrophoresis at pH 6.4 indicating the absence of a free β -carboxyl group in Asp.

	(Asp					
Peptide I:	Ile	-	Val -	inhibitor)	- Thr	
Composition	0.9		1.0	1.0	0.9	
Step 1 (82%)	< 0.1		1.0	(1.0)	0.9	
Step 2 (80%)			<0.1	(1.0)	0.9	
Step 3 (69%)			<0.1	0.1	(1.0)	

The sequence was confirmed by the dansyl Edman procedure. Amino acid analysis of a portion of the residue re-

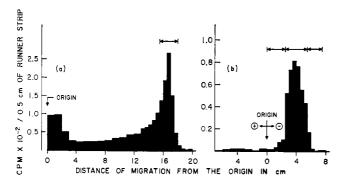


FIGURE 4: Distribution of ¹⁴C in runner strips obtained in purification of ¹⁴C-labeled material from faster migrating radioactive band in chromatography of peak A by (a) electrophoresis in 8% formic acid for 5 hr and (b) electrophoresis at pH 3.6 for 4 hr.

maining after step 3 without prior acid hydrolysis indicated the amount of free Thr expected if Thr is C terminal. Measurements for 14 C on the butyl acetate layers obtained at each stage of the Edman degradation indicated inhibitor was removed from the peptide in step 3, *i.e.*, with the Asp residue. Ratio μ moles of inhibitor (14 C)/ μ moles of Asp = 0.99.

Peptide II:	Val	- (Asp inhibitor) -	Thr
Composition	1.0	0.9	0.9
Step 1 (75%)	<0.1	(1.0)	0.9
Step 2 (76%)	0.1	0.1	(1.0)

This peptide was slightly impure (approximately 10% Gly, Ala, Leu, and Phe present). The inhibitor was removed from the peptide in step 2 with Asp, and free Thr released. Ratio μ moles of inhibitor (14 C)/ μ moles of Asp = 0.99.

					(Asp
Peptide III:	Ile	-	Val	-	inhibitor)
Composition	0.9		1.0		1.0
Step 1 (77%)	< 0.1		1.0		(1.0)
Step 2 (79%)			0.1		(1.0)

Ratio μ moles of inhibitor (1⁴C)/ μ moles of Asp = 1.00. The ratio of inhibitor: Asp in the residue following step 2 was 1.03. Treatment of a portion of the residue from step 2 with 0.5 ml of 5% trimethylamine for 30 min at room temperature followed by evaporation of the solvent *in vacuo* over H₂SO₄ liberated Asp (approximately 70% yield) as indicated by amino acid analysis performed without prior acid hydrolysis.

	(Asp						
	in-						
	hibi-						
Peptide A:	Ile -	Val	- tor)-	(Thr,	Gly)	- Ser -	Leu
Composition	1.0	1.1	1.2	2.2	1.2	1.0	1.1
Step 1	< 0.1	0.9	(1.0)	1.7	1.0	0.7	0.8

(Residue from Edman was hydrolyzed 69 hr before analysis.)

Carboxypeptidase A (4.5 hr, 37°) Leu, 0.8; Ser, 0.5; Thr, 0.2 Carboxypeptidase A (16 hr, 37°) Leu, 0.9; Ser, 0.7; Thr, 0.4

Although the relative amount of Thr increased from 16 to 37% in carboxypeptidase A digestions for 4.5 and 16 hr, respectively, the absolute amounts of Thr released in each case, 0.001 and 0.002 μ mole, were not sufficient to firmly establish Thr as the third amino acid from the C-terminal end of the peptide (see Discussion). Ratio μ moles of inhibitor $(^{14}\text{C})/\mu$ moles of Asp = 1.02.

Rate of Hydrolysis of ¹⁴C Label from Peptides. In order to ensure that the ¹⁴C label is attached to the peptides in the same way as to pepsin, the relative rates of hydrolysis of the ¹⁴C label from pepsin and the three peptides were determined. The relative rates are: ¹⁴C-labeled pepsin, 1.0; peptide I, 2.2; peptide II, 3.2; peptide III, 0.4. Although the data are probably not reliable to better than 10%, they clearly show that the ¹⁴C label is released from the peptides at a rate comparable to the rate of release from pepsin. Thus, presumably the bonding of the ¹⁴C label has not changed during the digestion of the labeled pepsin to yield the labeled peptides.

Discussion

The results reported here are consistent with the conclusion that DPB inactivates pepsin by reacting to give an ester of HPB with the β -carboxyl group of only one specific aspartyl residue. The results with peptides I, II, and III indicate the amino acid sequence in the immediate vicinity of the reactive aspartyl residue to be Ile-Val-Asp-Thr. The amino acid composition of peptide A, as well as identification of Ile as the N-terminal residue and Ser-Leu as the C-terminal sequence, indicate that this peptide is probably from the same site in the enzyme as that from which peptides I-III were derived and thus has the sequence: Ile-Val-Asp-Thr-(Gly,Thr)-Ser-Leu. Although not enough purified peptide A was obtained to allow direct determination for tryptophan, the absence of the latter from the interior of this peptide may be concluded from recent results of Dopheide and Jones (1968) on the sequence around the four tryptophan residues in pepsin. It seems likely, therefore, that the aspartyl residue in the sequence: Ile-Val-Asp-Thr-Gly-Thr-Ser, shown by Knowles and coworkers (Knowles and Wybrandt, 1968; Bayliss et al., 1969) to be reactive toward N-diazo[1¹⁴C]acetyl-L-phenylalanine methyl ester, is the same one that reacts with DPB, as reported here and in a prior communication (Fry et al., 1968). However, the position of this aspartyl residue in pepsin is not known; the above sequence is not present in any of the reported partial sequences of pepsin (Dopheide et al., 1967; Dopheide and Jones, 1968; Perham and Jones, 1967; Foltman and Hartley, 1967; Koehn and Perlmann, 1968; Matveeva et al., 1968; Ostoslavskaya et al., 1968; Vakhitova et al., 1968; Kostka et al., 1969).

Evidence that DPB reacts at only one site in the pepsin molecule includes: (1) the stoichiometry of the inactivation; loss of catalytic activity correlates directly with the reaction of 1 mole of DPB with 1 mole of pepsin to give a modified enzyme, and pepsin will not react with more DPB even in the presence of a large excess; (2) the kinetics of ¹⁴C release from ¹⁴C-labeled pepsin at pH 8; the release follows first-order kinetics to over 80% reaction; and (3) the amino acid sequence data: the yields, compositions, and sequences of the ¹⁴C-labeled peptides isolated are consistent with only one uniquely reactive site.

That the inactivated pepsin is an ester of HPB with the

β-carboxyl group of a uniquely reactive aspartyl residue is indicated by the neutrality of peptides I-III at pH 6.4, and removal of the ¹4C-label during Edman degradations with the removal of the aspartic acid residue. The comparable rates of hydrolysis of the model compound AcHPB and inhibited pepsin further indicate attachment of the inhibitor by an ester linkage. The surprising ease of hydrolysis of AcHPB and inactivated pepsin may be due to (1) the electrostatic effect of the ketonic group making the alcoholate a better leaving group, and (2) intramolecular participation in the hydrolysis by the hydrate of the ketonic group. Large accelerations due to intramolecular participation in the rate of hydrolysis of closely related ketonic or aldehydic esters have been observed (Newman and Hishida, 1962; Bender and Silver, 1962).

The evidence, that the aspartyl residue which reacts with DPB is directly involved in the mechanism of the enzymic catalysis, although not conclusive, is indicative. Observations which indicate this are: (1) substrates of pepsin protect it from inactivation by DPB, (2) the modified enzyme is completely inactive in at least two assays, using *N*-acetyl-phenylalanyl-L-tyrosine and hemoglobin as substrates, and (3) pepsinogen does not react with DPB.

As indicated in the introduction, kinetic studies have shown that at least two different carboxyl groups of pepsin are involved in the enzymic catalysis. If either of these is the one which reacts with DPB then it is probably the one with the higher pK; diazo compounds are known to react more readily with un-ionized carboxylic acids than with carboxylate groups.

Acknowledgments

We are indebted to Mr. Eugene Loewer and Mr. David Rifenberick for excellent technical assistance, and to Mrs. Catherine Ryan for amino acid analyses.

References

Ambler, R. P. (1967a), Methods Enzymol. 11, 437.

Ambler, R. P. (1967b), Methods Enzymol. 11, 156.

Bayliss, R. S., and Knowles, J. R. (1968), *Chem. Commun.*, 196.
Bayliss, R. S., Knowles, J. R., and Wybrandt, G. B. (1969), *Biochem. J.* 113, 377.

Bender, M. L., and Silver, M. S. (1962), J. Amer. Chem. Soc. 84, 4589.

Birkofer, L. (1947), Chem. Ber. 80, 83.

Brady, O. L. (1931), J. Chem. Soc., 756.

Bray, G. A. (1960), Anal. Biochem. 1, 279.

Clement, G. E., Snyder, S. L., Price, H., and Cartmell, R. (1968), *J. Amer. Chem. Soc.* 90, 5603.

Cornish-Bowden, A. J., and Knowles, J. R. (1969), *Biochem. J. 113*, 353.

Crestfield, A. M., Moore, S., and Stein, W. H. (1963), *J. Biol. Chem.* 238, 622.

Delpierre, G. R., and Fruton, J. S. (1965), *Proc. Nat. Acad. Sci. U. S.* 54, 1161.

Delpierre, G. R., and Fruton, J. S. (1966), *Proc. Nat. Acad. Sci. U. S.* 56, 1817.

Denburg, J. L., Nelson, R., and Silver, M. S. (1968), J. Amer. Chem. Soc. 90, 479.

Dopheide, T. A. A., and Jones, W. M. (1968), J. Biol. Chem. 243, 3906.

- Dopheide, T. A. A., Moore, S., and Stein, W. H., (1967), J. Biol. Chem. 242, 1833.
- Eaker, D. L. (1962), Ph.D. Dissertation, Rockefeller University, p 29.
- Erlanger, B. F., Vratsanos, S. M., Wassermann, N., and Cooper, A. G. (1965), *J. Biol. Chem.* 240, PC3447.
- Erlanger, B. F., Vratsanos, S. M., Wassermann, N., and Cooper, A. G. (1966), *Biochem. Biophys. Res. Commun.* 23, 243.
- Erlanger, B. F., Vratsanos, S. M., Wassermann, N., and Cooper, A. G. (1967), *Biochem. Biophys. Res. Commun.* 28, 203.
- Foltman, B., and Hartley, B. S. (1967), *Biochem. J.* 104, 1064. Fry, K. T., Kim, O.-K., Spona, J., and Hamilton, G. A.
- (1968), Biochem. Biophys. Res. Commun. 30, 489.
- Gray, W. R. (1967a), Methods Enzymol. 11, 139. Gray, W. R. (1967b), Methods Enzymol. 11, 469.
- Gross, E., and Morell, J. L. (1966), J. Biol. Chem. 241, 3638.
- Hamilton, G. A., Spona, J., and Crowell, L. D. (1967), Biochem. Biophys. Res. Commun. 26, 193.
- Hirs, C. H. W., Moore, S., and Stein, W. H. (1956), J. Biol. Chem. 219, 623.
- Hollands, T. R., and Fruton, J. S. (1968), Biochemistry 7, 2045.
- Jackson, W. T., Schlamowitz, M., and Shaw, A. (1965), Biochemistry 4, 1537.
- Jackson, W. T., Schlamowitz, M., Shaw, A., and Trujillo, R. (1969), Arch. Biochem. Biophys. 131, 374.
- Katz, A. M., Dreyer, W. J., and Anfinsen, C. B. (1959), J. Biol. Chem. 234, 2897.
- Knowles, J. R., and Wybrandt, G. B. (1968), FEBS (Fed. Eur. Biochem. Soc.) Lett. 1, 211.
- Koehn, P. U., and Perlmann, G. E. (1968), J. Biol. Chem. 243, 6099.
- Kostka, V., Moravek, L., Kluh, I., and Keil, B. (1969), Biochim. Biophys. Acta 175, 459.
- Kozlov, L. V., Ginodman, L. M., and Orekhovich, V. N. (1967), *Biokhimiya 32*, 1011.
- Lundblad, R. L., and Stein, W. H. (1969), J. Biol. Chem. 244, 154.
- Lutsenko, N. G., Ginodman, L. M., and Orekhovich, V. N. (1967), *Biokhimiya 32*, 223.

- Matveeva, R. A., Krivtsov, V. F., and Stepanov, V. M. (1968), *Biokhimiya 33*, 167.
- McPhee, W. D., and Klingsberg, E. (1944), *J. Amer. Chem. Soc.* 66, 1132.
- Moore, S., and Stein, W. H. (1948), J. Biol. Chem. 176, 367.
- Morse, D., and Horecker, B. L. (1966), *Anal. Biochem.* 14, 429.
- Newman, M. S., and Hishida, S. (1962), J. Amer. Chem. Soc. 84, 3582.
- Nolan, C., and Margoliash, E. (1966), J. Biol. Chem. 241, 1049.
- Offord, R. E. (1966), Nature (London) 211, 591.
- Ong, E. B., and Perlmann, G. E. (1967), *Nature (London) 215*, 1492.
- Ostoslavskaya, V. I., Pugacheva, I. B., Vakhitova, E. A., Krivtsov, V. F., Muratova, G. L., Levin, E. D., and Stepanov, V. M. (1968), *Biokhimiya 33*, 331.
- Perham, R. N., and Jones, G. M. T. (1967), Eur. J. Biochem. 2, 84.
- Perlmann, G. E. (1966), J. Biol. Chem. 241, 153.
- Rajagopalan, T. G., Moore, S., and Stein, W. H. (1966a), *J. Biol. Chem.* 241, 4940.
- Rajagopalan, T. G., Stein, W. H., and Moore, S. (1966b), J. Biol. Chem. 241, 4295.
- Rosen, H. (1957), Arch. Biochem. Biophys. 67, 10.
- Rothman, F., and Byrne, R. (1963), J. Mol. Biol. 6, 330.
- Shkarenkova, L. S., Ginodman, L. M., Kozlov, L. V., and Orekhovich, V. N. (1968), *Biokhimiya 33*, 154.
- Spackman, D. H., Stein, W. H., and Moore, S. (1958), *Anal. Chem. 30*, 1190.
- Stein, T. P., and Fahrney, D. (1968), Chem. Commun., 555.
- Stepanov, V. M., and Vaganova, T. I. (1968), Biochem. Biophys. Res. Commun. 31, 825.
- Stetter, H., and Kiehs, K. (1965), Chem. Ber. 98, 1181.
- Vakhitova, E. A., Pugacheva, I. B., Amirkhanyan, M. M., Valyulis, R. A., Senyumenkova, L. G., Belen'kii, B. G., and Stepanov, V. M. (1968), Izv. Akad. Nauk SSSR, Ser. Khim., 2415.
- Woods, K. R., and Wang, K. T. (1967), Biochim. Biophys. Acta 133, 369.
- Zeffren, E., and Kaiser, E. T. (1967), J. Amer. Chem. Soc. 89, 3129.